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Main Points
•	 Corrosion is an inevitable natural process in fixed orthodontic appliances.
•	 The observed decrease in the growth of Streptococcus mutans was likely caused by corrosion or a related process.
•	 Even a low level of S. mutans represents a corrosion-promoting factor for stainless steel-based materials.
•	 The corrosion behavior and biocompatibility of the studied alloys might depend on their surface roughness.

ABSTRACT 

Objective: The aims of this study were to determine the effect of different levels of Streptococcus mutans that correspond to a low risk 
of dental caries on nickel release and to determine the viability of S. mutans.

Methods: Simulated fixed orthodontic appliances composed of copper nickel titanium, nickel titanium, or stainless steel were im-
mersed in Klimek artificial saliva for 10 days with or without S. mutans inoculation on day 7. Same levels of S. mutans cultures (4 × 104 
cfu/mL) were inoculated into the artificial saliva without orthodontic appliances. Nickel release was detected by inductively coupled 
plasma mass spectrometry. The archwire surface was analyzed by atomic force microscopy and scanning electron microscopy.

Results: The density of S. mutans significantly increased in the artificial saliva without orthodontic appliances (P < .05). Appliances 
with nickel titanium alloys showed higher nickel release in the artificial saliva with or without S. mutans than those with copper nickel 
titanium or stainless steel archwires (P < .05). However, S. mutans increased nickel release only in orthodontic appliances with stain-
less steel archwires (P < .05). Although atomic force microscopy showed that the surface of as-received stainless steel archwires was 
smoother than that of nickel titanium or nickel titanium archwires, S. mutans increased the surface roughness of only the SS archwires. 
S. mutans adhered to all archwire types.

Conclusion: While corrosion or corrosion-related processes may have decreased the growth capacity of S. mutans, reciprocally,  
S. mutans influenced corrosion. Rough surfaces can also promote corrosion; therefore, the surface roughness of metal alloy orthodon-
tic appliances should be evaluated to determine their corrosion behavior.
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INTRODUCTION

Metals or metal alloys are corroded due to oxidation or other chemical effects, and ions are released into the 
environment as a result. Metals become corroded in the oral environment within 7 days, after which corrosion 
decreases, and then stops.1,2 This process is induced by the development of new corrosion factors. The cycle will 
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continue depending on the microbiological, enzymatic, ionic, 
and thermal properties in the oral environment and can cause 
the metal to corrode and degrade biologically. Therefore, corro-
sion is an inevitable natural process in fixed orthodontic appli-
ances. Most orthodontic treatments are implemented using 
fixed devices such as brackets, tubes or bands, and wires made 
of metal alloys. Nickel (Ni) and chromium (Cr) are the primary 
ions released from these alloys. Ni and Cr are post-corrosion 
products that can have genotoxic, mutagenic, and cytotoxic 
effects that could cause contact allergies, asthma, hypersensitiv-
ity, birth defects, and reproductive damage.3,4 Thus, the biocom-
patibility of the materials utilized in orthodontic treatments is of 
importance.

Streptococcus mutans is a gram-positive, facultative anaero-
bic bacterium found mostly in the human oral cavity and is 
involved in the formation of dental caries. Hence, S. mutans is 
graded according to the colony-forming units per milliliter (cfu/
mL) in the mouth. The risk of caries is graded as high (≥106 cfu/
mL), moderate (105-<106 cfu/mL), and low (≤105).5 Orthodontic 
treatments should be implemented after the completion of 
all essential dental and periodontal therapies. Difficulties with 
brushing the teeth and an increase in areas of retention dur-
ing fixed orthodontic treatment might increase the density 
of S. mutans, thereby increasing the risk of caries. However, it 
is unlikely for patients with good oral hygiene to have a high 
density of S. mutans during orthodontic treatment. Studies 
have reported that the corrosion of alloys such as cobalt (Co), Cr 
and nickel-chromium (Ni/Cr), and titanium (Ti) dental implants 
increases in the presence of S. mutans, which increases the risk 
of caries.6-10 However, to the best of our knowledge, the in vitro 
corrosion behavior of alloys under a low risk of caries has not 
yet been investigated. The corrosion process during orthodon-
tic treatment in a mouth with a relatively low risk of dental car-
ies could inhibit the growth of S. mutans. Thus, in the present 
study, the primary objective was to determine the amount of 
Ni released by simulated orthodontic appliances with different 
types of archwires in vitro in the presence of S. mutans at levels 
that correspond to a low risk of caries and the secondary objec-
tive was to determine the growth ability of S. mutans in a cor-
rosive environment.

METHODS

This was an in vitro study. Fixed orthodontic appliances rep-
resenting half of the maxillary arch consisted of 5 structurally 
identical brackets, a molar band, and 6-cm-long copper-nickel-
titanium (CuNiTi), nickel-titanium (NiTi), or stainless steel (SS) 
archwires tied with elastic ligatures (Astar Orthodontics Inc., 
Shanghai, China). Klimek artificial saliva comprising ascorbic 
acid (0.002 g), glucose (0.030 g), NaCl (0.580 g), CaCl2 (0.170 g), 
NH4Cl (0.160 g), KCl (1.270 g), NaSCN (0.160 g), KH2PO4 (0.330 g), 
urea (0.200 g), Na2HPO4 (0.340 g), and mucin (2.700 g) (Bacto-
Mucin Bacteriological) in 1 L of distilled water (pH 6.75) was 
prepared.11 In this study, there was 1 experimental group (EG) 
and 2 control groups (CG 1 and CG 2). The EG and CG 1 groups 
were subgrouped according to appliances with CuNiTi (group A), 
NiTi (group B), and SS (group C) archwires. All EG and CG 1 sub-
groups consisted of 3 replicates. All simulated fixed orthodontic 
appliances were immersed in 50 mL of Klimek artificial saliva. 
The artificial saliva in the EG (3 appliances each in group A [C], 
group B [C], and group C [C]) groups was inoculated with 100 µL 
of S. mutans (ATCC 25175; 4 × 104 cfu/mL) on day 7 of the experi-
ment. The other half of the simulated fixed orthodontic appli-
ances (3 appliances each in group A [C], group B [C], and group C 
[C]) remained submerged in the Klimek artificial saliva until day 
10 without S. mutans inoculation in CG 1. The CG 2 group com-
prised 9 replicates; Klimek artificial saliva (without appliances) 
was inoculated with the same level of S. mutans under identi-
cal conditions. The samples were incubated at 37°C in a 5% CO2 

atmosphere for 72 h, following which S. mutans was evaluated 
(cfu/mL) using the spread plate technique. The initial and final 
pH values of Klimek artificial saliva were measured at room 
temperature using an HI-1131B pH meter (Hanna Instruments 
Inc., Carrollton, Tex, USA). The experimental setups and sample 
preparation for inductively coupled plasma mass spectrometry 
(ICP-MS) were made by S. Titiz, Z.K. Erdogan. Figure 1 shows a 
brief schema of the experiment. 

Detection of Nickel Release by Inductively Coupled 
Plasma Mass Spectrometry (ICP-MS)
The amount of Ni released into Klimek artificial saliva was evalu-
ated using an ELAN DRC-eICP-mass spectrometer (Perkin Elmer, 

Figure 1.  Schema of experimental setup. Subgroups of the experimental group: appliances with archwires containing CuNiTi (group A [E]), NiTi 
(group B ([E]), and SS (group C [E]). Subgroups of control group 1: appliances with archwires containing CuNiTi (group A [C]), NiTi (group B [C]), and 
SS (group C [C]). Control group 2: artificial saliva with Streptococcus mutans inoculation 
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Norwalk, CT, USA). Samples were placed in a 40-kHz ultrasonic 
water bath (ISOLAB Laborgeräte GmbH., Wertheim, Germany) for 
30 min, centrifuged at 7000 rpm (Optima™ X Series centrifuge; 
Beckman Coulter, Brea, Calif, USA), and then passed through a 
0.45-mm Millex® Syringe filter (Sigma-Aldrich Corp., St. Louis, Mo, 
USA). Samples of homogenized artificial saliva (500-600 μL) were 
weighed, immersed in 10 mL of 65% nitric acid (Sigma-Aldrich 
Corp.) to breakdown organic compounds, and placed in a micro-
wave oven (1600 W, 100% power at 30° and 160 mmHg). The 
samples were then placed in an oven for measurement, with 50 
mL of ultrapure water.

Characterization of Surface Topography
The average roughness (Ra) of the as-received and post-immer-
sion archwires and their surface morphologies were assessed 
in the EG and CG 1 groups by atomic force microscopy (AFM) 
and scanning electron microscopy (SEM) (Gemini SEM 300; Carl 
Zeiss AG., Oberkochen, Germany). Microorganisms were fixed by 
dehydrating the wires in a graded series of alcohol (50%, 70%, 
85%, 90%, and 100%) and immersed in 10% (v/v) glutaraldehyde. 

Statistical Analysis
Data are shown as number, mean, and standard deviation. 
Normal distribution was assessed using Shapiro−Wilk test, and 
variance homogeneity was evaluated using Levene test. The 
average Ni oscillation between independent groups satisfying 
the assumptions was compared using an independent samples 
t-test. The averages of 3 or more independent groups were 
compared using the one-way ANOVA if they met the assumed 

criteria and those of 3 independent groups that did not meet the 
assumption criteria were compared using Kruskal−Wallis test. 
Groups with differences were assessed with Bonferroni correc-
tion. Differences with a P-value < .05 were considered significant.

RESULTS

Findings of ICP-MS
Table 1 and Figure 2a and b show a comparison of Ni-release  
in EG and CG1. More Ni was released by appliances with NiTi 
(group B) than with CuNiTi or SS archwires (group A or group 
C) in CG 1 and EG (P < .05). The amount of Ni released from 
appliances with SS and CuNiTi archwires was similar in CG 1 (P 
> .05), whereas more Ni was released from appliances with SS 
archwires in EG than from appliances with CuNiTi archwires (P < 
.05). Nickel release between the subgroups of CG 1 and EG was 
evaluated; it was found that the amount of Ni released between 
Groups CC and CE significantly differed (P < .05). Furthermore, S. 
mutans increased the rate of Ni-release from appliances with SS 
archwires (group C, P < .05) but did not significantly affect that 
from appliances with CuNiTi or NiTi archwires (group A or B; P > 
.05; Table 1, Figure 2b).

Characterization of Surface Topography
Table 2 and Figure 3 show the comparisons of the Ra values of 
archwires as-received and after immersion in the EG and CG 1 
groups. The surface roughness of CuNiTi and NiTi archwires as-
received and after immersion in artificial saliva medium with or 
without S. mutans was similar (P > .05), and their Ra values were 

Table 1.  Comparison of the amounts of nickel released between the experimental groups and control group 1

Group A
Mean ± SD

Group B
Mean ± SD

Group C
Mean ± SD P

A/B
P

B/C
P

A/C
P

CG1 42.52 ± 4.33 68.341 ± 2.657 37.97 ± 2.27 .0001* .0001* .000* .65

EG 37.40 ± 4.28 72.307 ± 5.31 52.45 ±4.23 .000* <.0001 .006* .022*

P .219 .312 .006*

*Significant difference at P < .05. CG1, control group 1; EG, experimental group; SD, standard deviation. Appliances with CuNiTi archwires, group A (A); appliances with 
NiTi archwires, group B (B); appliances with SS archwires, group C (C).

Figure 2. a, b.  Nickel release in groups and subgroups. (a) Amount of Ni released in subgroups AC, BC, and CC of control group 1, and AE, BE, and CE of 
experimental group. Appliances with archwires containing CuNiTi (group A), NiTi (group B), and SS (group C). (b) Amount of Ni released by the 
control group 1 and experimental group subgroups. a and b indicate statistically significant differences (P < .05) between each measurement item 
compared
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higher than those of SS archwires (P < .05). The surface rough-
ness of the CuNiTi and NiTi archwires did not change in the artifi-
cial saliva with and without S. mutans in the EG and CG 1 groups 
(P > .05). The surface roughness of the SS archwires increased in 
artificial saliva with S. mutans in CG 1 (P < .05), and the Ra values 
of SS archwires in the EG group were higher than those of as-
recieved and SS archwires in the CG 1 group (P < .05). The AFM 
findings were consistent with the surface structures visualized 
by SEM (Figures 4–6).

Streptococcus Mutans Cell Viability
S. mutans proliferated more in artificial saliva in the absence 
of appliances in the CG 2 group compared with that in the EG 
group (P < .05), whereas the EG subgroups did not significantly 
differ (P > .05; Tables 3 and 4 and Figure 7). The SEM images 
revealed S. mutans adhesion to all types of archwires (Figure 6). 
The presence of S. mutans decreased the pH in the CG 2 group 
(pH 4.95-4.93), but it did not affect the pH of the EG subgroups 
(pH 6.75-6.73). 

DISCUSSION

Non-optimal conditions in the oral cavity can accelerate corro-
sion; thus, understanding the corrosion behavior of metals is 

important to evaluate their biocompatibility. Metal (Ni, Fe, Cu, 
and Ti) ions released into the environment as a result of corro-
sion might cause local or systemic adverse reactions in some 
patients.4 One of the most prevalent local reactions is sensitivity 
to Ni, which exerts systemic cytotoxic and mutagenic effects3; 
however, it is widely applied in dentistry. Thus, Ni-release from 
orthodontic appliances with NiTi, CuNiTi, or SS archwires was 
investigated in the presence of S. mutans. The corrosive behav-
ior of metals or alloys is determined by estimating the number 
of ions passing into their liquid environment (immersion tests) 
or is determined electrochemically. However, electrochemi-
cally evaluating the corrosion behavior of metals can lead to 
significantly different results from those obtained in the oral 
environment.12 Therefore, the corrosive behavior of metals was 
determined using immersion tests. In this study, simulated 
orthodontic appliances composed of 5 structurally identical SS 
brackets and bands, elastic ligatures, and 3 types of orthodontic 
wires. The difference in corrosive behavior in the EG and CG 1 
subgroups can be attributed to the types of orthodontic wires. 
Ions passing into artificial saliva can be measured in immer-
sion tests using various devices. Hwang et al.1 and Kuhta et al.13 
determined the number of corrosion products by ICP/MS as in 
our study. However, Barret  et  al.2 and Reddy14 determined the 
number of ions by ICP-optical emission spectroscopy (OES). 

Table 2.  Comparison of the Ra values between as-received archwires and those in the experimental groups and control group 1

CuNiTi (A)
Mean ± SD

NiTi (B)
Mean ± SD

SS (C)
Mean ±SD P

A/B
P

B/C
P

A/C
P

As-r 79.28 ± 1.00 78.18 ± 2.00 40.05 ± 1.00 .000* 1.000 .000* .000*

CG1 80.66 ± 2.51 81.16 ± 1.00 41.66 ± 1.52 .000* 1.000 .000* .000*

EG 81.00 ± 1.00 78.66 ± 2.77 60.04 ± 1.00 .027* .534 .025* .027*

P .354 .082 .000*

As-r/CG1  0.352

As-r/EG 0.000*

CG1/EG 0.000*
*Significant difference at P < .05. As-r, as-received; CG1, control group 1; EG, experimental group; SD, standard deviation. Appliances with CuNiTi archwires, group A 
(A); appliances with NiTi archwires, group B (B); appliances with SS archwires, group C (C). Paired comparisons were not performed when P (ANOVA) was not 
significant.

Figure 3.  Comparison of the Ra values of archwires as-received and after immersion. Control group 1 (C) and experimental group (E). The first 
column shows the archwire type. a and b indicate statistically significant differences (P < .05) between each compared measurement item
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While ICP-OES is widely available and reasonably cost-effective, 
ICP-MS requires experienced staff and is expensive; furthermore, 
ICP-MS is more sensitive than ICP-OES. However, both devices 
are used in corrosion studies with the appropriate sample prep-
aration protocol.1,2,8,13,14

In our study, more Ni was released by orthodontic appliances 
with NiTi than with SS or CuNiTi archwires in the absence of 
S. mutans; this finding is consistent with that of Barrett  et  al.2 
However, some study findings are controversial. Contrary to 
the findings of Barrett  et  al., Karnam and Reddy14 found no 

Figure 4.  Scanning electron microscopy images of as-received archwires. Subgroups: CuNiTi (a, b), NiTi (c, d), and SS (e, f ). Magnification: 1.00 KX (a, 
c, e) and 5.00 KX (b, d, f )
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differences in the Ni-release rates of orthodontic appliances with 
SS, NiTi, CuNiTi or Elgiloy® archwires, and SS brackets. Moreover, 
Hwang et al.1 reported that more Ni ion was released by SS than 
by CuNiTi or Sent alloy® and BioForce® archwires, and Kuhta et al.13 
found that SS archwires released the most Ni ions at pH 3.5 and 

6.8 compared with thermal NiTi and NiTi archwires. The surface 
topography of an alloy is related to corrosion behavior.15,16 In 
the present study, the surface roughness of the archwires was 
examined. Based on the findings of previous studies,17,18 as well 
as our AFM and SEM findings, the surface of NiTi archwires is 

Figure 5.  Scanning electron microscopy images of archwires in the control group 1 subgroups. Subgroups: CuNiTi (a, b), NiTi (c, d), and SS (e, f ) 
archwires. Magnification: 1.00 KX (a, c, e) and 5.00 KX (b, d, f ).
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Figure 6.  Scanning electron microscopy images of archwires with adherent Streptococcus mutans. S. mutans adhered to all types of archwires in the 
experimental group subgroups. Subgroups: CuNiTi (a, b), NiTi (c, d), and SS (e, f ) archwires. Magnification: of 1.00 KX (a, c, e) and 5.00 KX (b ,d, f )

Table 3.  Comparison of the counts of Streptococcus mutans in control group 2 and subgroups of the experimental group

Initial CG2 Group AE Group BE Group CE

I/CG2
P

CG2/A
P

CG2/B
P

CG2/C
P

cfu/mL 104 106 ± 5.1 × 102 5 × 104 ± 5.19 × 102 5.3 × 104 ± 1.1 × 102 11 × 104 ± 8 × 102 .00* .00* .00* .00*

*Significant difference at P < .05. CG 2, control group 2; E, experimental; I, initial density of inoculated Streptococcus mutans cells. Appliances with CuNiTi archwires, 
group A; appliances with NiTi archwires, group B; appliances with SS archwires, group C.
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rougher than that of SS archwires. Increased surface roughness 
should be considered as a contributing factor to the corrosive 
behavior of orthodontic archwires by facilitating and increasing 
ion release.19,20 Thus, it was considered that increased Ni-release 
from appliances with NiTi compared with that from appliances 
with SS archwires was associated with the rougher surface of NiTi 
than that of SS archwires.

The passive protective oxide layer on the surface of a metal or 
alloy provides resistance to corrosion and self-repair. Protective 
layers comprise Cr2O3 oxide on SS archwires and TiO2 oxide on 
archwires that contain Ti. In alloys containing Ti, the layer of 
Ti-oxide is stronger than that of Cr-oxide, thus increasing corro-
sion resistance.21 However, other factors may increase the corro-
sion rate of Ti-containing alloys. Alloys containing Ti have rougher 
surfaces than SS archwires, which can lead to the galvanic cor-
rosion of these alloys.22,23 Moreover, manufacturing defects in 
NiTi wires can be another factor that increase corrosion due to 
the rougher texture.22 As many factors lead to corrosion, it was 
considered that various brands of alloys are produced using dif-
ferent methods or that differences in the surface topography of 
alloys and study designs may have led to contradictory results.

The corrosion current of NiTi archwires is higher than that of 
SS wires in electrochemical tests involving oral bacteria.6,24,25 
Kameda et al.8 used ICP-OES to investigate the corrosive behavior 
of orthodontic appliances with SS and NiTi archwires in a high-risk 

caries environment inoculated with S. mutans and Streptococcus 
sanguinis. They reported that the surface of the SS appliances 
became rougher, and their ICP-OES results showed that Ni is 
released from SS, but not from Ni-Ti appliances, when cultured 
with oral bacteria. Similar to the findings of Kameda  et  al.8 in 
this study, it was observed that S. mutans increased the surface 
roughness of SS archwires and caused Ni-release from orthodon-
tic appliances with SS archwires. However, less Ni was released 
from orthodontic appliances with SS than from those with NiTi, 
probably due to the low abundance of S. mutans.

Biofilms produced on metal surfaces by S. mutans can lead to 
a localized acidic environment that promotes corrosion; there-
fore, the pH in an environment might not always reflect local pH 
changes.8 In this study, a slight infection with S. mutans did not 
change the pH of artificial saliva with immersed appliances. Thus, 
the effects of S. mutans could be ascribed to localized changes in 
pH, and archwires made of SS might be more sensitive to the 
changes in localized pH than those made of NiTi. Our findings 
also suggest that while oral bacteria affect the corrosion of SS 
appliances, galvanic corrosion might occur primarily in Ni-Ti 
appliances.22-23 Moreover, adding Cu to NiTi archwires increases 
the biocompatibility of NiTi archwires.26 In the present study, it 
is found that CuNiTi wires released less Ni than NiTi wires in the 
artificial saliva with or without S. mutans although the Ra values 
of CuNiTi and NiTi archwires were similar.

An investigation of the effects of 16 pure metals on S. mutans 
growth in vitro showed that the corrosion process significantly 
depends on bacteriostasis27 and that Co, CuNi, Ti, Fe, and vana-
dium inhibit the growth of the organism. Our findings of the 
effects of orthodontic alloys on the growth of S. mutans in 
artificial saliva in vitro were comparable with these results. 
Furthermore, it was found that S. mutans did not grow in the 
presence of corrosion.

Bacteria preferentially colonize rough surfaces over smooth sur-
faces.28 The degree of surface roughness does not significantly 
affect bacterial adhesion after 6 hours of incubation with micro-
organisms.29,30 Our SEM images were acquired after incubating 
the 3 types of archwire types with S. mutans for 3 days. Therefore, 
the rates of adhesion were similar even when the surface rough-
ness of the archwires differed. 

Many factors can affect corrosion, such as microbiological, enzy-
matic, ionic, and thermal properties in the oral environment. It 
is not possible to simulate the exact oral environment in vitro. 
However, it is important to determine the effect of the factors 
individually in an environment where many variables are present 
at the same time in order to understand the corrosion mecha-
nism. For this reason, in vitro study is important. In this study, 
the density of S. mutans in an individual with good oral hygiene 
was considered. In order to understand the interaction between 
S. mutans and corrosion in a broader context, the effect of S. 
mutans on corrosion at different pH and different concentrations 
should be investigated.

Table 4.  Comparison of the counts of S. mutans

Groups P

Initial/group AE 1

Initial/group BE 1

Initial/group CE 0.78

Group AE/group BE 1 1

Group BE/group CE 1 1

Group AE/group CE 1 1
Significant difference at P<0.05. I, initial density of inoculated S. mutans;  
E: Experimental. Appliances with CuNiTi archwires, Group A; appliances with 
NiTi archwires, Group B; appliances with SS archwires, Group C.

Figure 7.  Density of Streptococcus mutans in control group 2 and the 
experimental group subgroups AE, BE, and CE. I, original density of 
inoculated S. mutans cells
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CONCLUSION

The relationship between corrosion product formation and 
S. mutans is reciprocal, as corrosion inhibited the growth of 
S. mutans in Klimek artificial saliva. Even at a low density of S. 
mutans, Ni-release increased in appliances with SS archwires, 
indicating that S. mutans promotes corrosion. As rough surfaces 
can also promote corrosion, surface properties should be con-
sidered when evaluating the corrosion properties of any metal 
alloy.
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